CANape (Measurement and Calibration Tool) Setup Manual – Version 1
Author: Ximu Zhang
Created Date: 02/02/2021
Objective 
· CANape is a software tool used to measure and calibrate variables in the applications running in any microprocessors. It supports various protocols for data transfer (CAN, Ethernet, etc). At the protocol layer, it requires the XCP protocol for communication. This manual shows how to establish communication between CANape and ARM Cortex-A9 on the Xilinx ZYNQ-7000 Zedboard through XCP on Ethernet. Communication between FPGA and ARM will also be covered in this manual.
Software
· Vector CANape 17.0 (Demo Version)
· Xilinx Vivado Design Suite - HLx Editions 2018.2
Hardware Platform
· Xilinx ZYNQ-7000 Zedboard, containing
· FPGA
· ARM Cortex-A9 (dual cores)
Prerequisite
· (optional) A FPGA model built using Xilinx System Generator in MATLAB Simulink.
Example
· PFC_2kW_vi
References 
· https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/oslib_rm.pdf
· https://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf
· https://support.vector.com/kb?id=kb_article_view&sysparm_article=KB0011316&sys_kb_id=b9e40ea41b2614148e9a535c2e4bcb69&spa=1
· https://assets.vector.com/cms/content/application-areas/ecu-calibration/xcp/XCP_ReferenceBook_V3.0_EN.pdf
· https://assets.vector.com/cms/content/know-how/_application-notes/AN-IMC-1-024_How_do_I_create_an_A2L_file_from_CANape.pdf
· http://read.pudn.com/downloads200/ebook/942888/ASAP2.pdf
· https://cdn.intrepidcs.net/support/ASAP2Editor/icsASAP2Editor.pdf


Vivado Part
Step 1: generate Vivado project in MATLAB Simulink (If FPGA Is Used)
[image: ]


Step 2: Open Vivado Project
Path: “.\PFC_2kW_vi\PFC_2kW_vi\netlist\ip_catalog”.
If you do not use FPGA, then you can open Vivado and create a project.
[image: ]


Step 3: Configure Zedboard
Open block design.
[image: ]
Using the default board setting is OK and you can also customize your board. The Ethernet port is necessary and should be checked in the system configuration.
[image: ]
Next, validate design and generate the wrapper file.
[image: ]


Step 4: Run Synthesis, Run Implementation and Generate Bitstream
[image: ]


Step 5: Export Hardware and Launch SDK
Export hardware and remember to check “Include bitstream”. Next, launch SDK.
[image: ][image: ]
[image: ]


Step 6: Create Application Project and Board Support Package (BSP)
Create an application project with a board support package.
[image: ]
[image: ] [image: ]
Right click BSP and open “Board Support Package Settings”.
[image: ]
Check lwip202 library and click “OK”. The BSP will be re-generated.
[image: ]


Step 7: Copy the Sample Program to the Application Folder, Add Directory and Configure the Compiler
Copy all the files in the “Sample Program”.
[image: ]
Paste in the SDK project under the following directory:
.\PFC_2kW_vi\PFC_2kW_vi\netlist\ip_catalog\pfc_2kw_vi.sdk\appl_pfc\src
[image: ]
When pasting the files, you will see a message showing whether to replace the existing files. Choose replacing all the files.
The next step is to add directory for the compiler so that the gcc compiler knows the location of header files in the application folder. Right-click the application folder and click “Properties”. Then in the following window, click “C/C++ Build”, “Settings”, “ARM v7 gcc compiler”, “Directories” and add path of the header files.
In the following window, click “Workspace…” and choose “XCP_Basic_Driver”, then click “OK” to add the include path. Do the same operation again but at this time choose “src”. Once you add the include path, click “Apply” or “OK”, the program will recompile.
[image: ]
[image: ]
[image: ]
Another step that needs to do is to configure the compiler. The gcc compiler doesn’t link “math.h” library by default. To configure this, add “m” under “ARM v7 gcc linker\Libraries” as shown in the following figure.
[image: ]
Note: there is a bug in the Xilinx SDK 2018.2 version related to LWIP library. Sometimes the compiler cannot find the path of this library although it does exist in the BSP.
For such case, try to regenerate the application and BSP again, and this issue may be solved. Or you can use a newer version of Xilinx SDK.


Step 8: FPGA Configuration and Setup
If you don’t use FPGA part, then you can jump to the step 10.
If you use FPGA, after the synthesis and launching the SDK, you will find the hardware platform in the Project Explorer. Under the directory “<name of the hardware platform>\drivers\<FPGA model name>\doc\api\index.html”, you can find the documentation of the FPGA APIs.
[image: ]
The following figure shows a glimpse of the documentation. By using this APIs, you can access the input and output gateways you defined in the FPGA model.
For output gateways, they are only-readable so you can read values from those gateways but you cannot write to them (read API available). For input gateways, you will find two APIs for one gateway: one is used to write values to that gateway, another is used to read value from that gateway.
Each API name is composed of FPGA model name and gateway name in the model plus read/write. Input datatype and output datatype are also specified in the documentation.
[image: ]
To execute the FPGA model along with your C code, you need to initialize the model in your program. 
To begin with, the header files of FPGA needs to be included. Go through the BSP, you can find two header files containing the name of your FPGA model. In the program, I also highlight the location where you need to include the header file. We only need pfc_2kw_vi.h in the application. Add the FPGA header file in “main.c” and “xcp_measure_calibration.h” files.
[image: ][image: ][image: ]
The next is to declare the FPGA object in “main.c”. You may have found that in the API documentation, in every function, there is a pointer named “*InstancePtr”. This pointer actually points to the FPGA model itself.
[image: ]
The initialization will be done in the main function in the “main.c” file. “XPAR_PFC_2KW_VI_0_DEVICE_ID” is the device ID of the FPGA model. You can find it in “xparameters.h”.
[image: ]
Now, the FPGA should work!


Step 9: Measurement/Calibration in C Code
Note that the FPGA model can work now, but it doesn’t mean everything at the software side is finished. CANape communicates with the Xilinx Zedboard through an Ethernet port but this happens at the ARM (microprocessor) side. 
For measurement and calibration of FPGA input and output gateways, communication between ARM and FPGA is required. This communication can be simply done by using autogenerated APIs. Communication codes are written in the “xcp_measure_calibrate.c” and “xcp_measure_calibrate.h”.
Depending on the actual FPGA model, this part of code needs to be modified by users. To keep consistent with the types of variables in CANape, let’s classify the variables into measurement and parameter/characteristic. Measurement represents the variables that are only readable (outputs). Parameter/characteristic represents the variables that are not only readable but also writeable (inputs).
Users need to define the measurement and parameter/characteristic in the program as shown in the following figure. These variables are global and the data types should fit the real value data types. To use FPGA APIs, the FPGA object is required. The object is already declared in “main.c” so here we use key word “extern” to specify this object variable is declared somewhere else.
[image: ]
In “xcp_measure_calibrate.c”, there are three functions “calibarteVarsInit()”, “xcpVarsRead100us()” and “xcpVarsUpdate()”.
“calibarteVarsInit()” is used to initialize inputs in the FPGA model. Users should manually use APIs and add code in this function.
“xcpVarsRead100us()” is used for measurement purpose. A timer with 100us period will call this function to update all the measurement defined in the C code with the outputs from FPGA model (the timer is setup and configured in the sample program). Users need to manually add code in this function to use APIs to do the update.
 “xcpVarsUpdate()” is used for calibration purpose. In the sample program, this function is called for every 2ms. Users need to add code in this function to specify which variables will be updated from ARM to FPGA.
The following figure shows an example. “calibarteVarsInit()” assigns the values in kp and ki to the input gateway pi_v_kp and pi_v_ki in the FPGA model. “xcpVarsRead100us()” assigns the values at pi_v_kp and pi_v_ki gateways to the variables kp_read and ki_read in the program for every 100us. “xcpVarsUpdate()” is similar to “calibarteVarsInit()”. It updates pi_v_kp and pi_v_ki in the FPGA model by using the values in variables kp and ki for every 2ms.
[image: ]
Again, if the FPGA part is not used, the communication between FPGA and microprocessor (ARM) is not necessary and this step can be skipped.


Step 10: Ethernet Port Configuration
To successfully establish the communication between ARM and CANape through the ethernet. The port at PC side also needs to be configured. In Network Connections (Windows), right-click the ethernet port that the board connects to and open the properties. Then choose Internet Protocol Version 4 (TCP/IPv4) and open the properties. Change to use static IP address and manually input the address shown in the following figure.
[image: ][image: ]


CANape Part
Step 11: CANape Introduction
Finally, we can move to CANape part. The CANape project is already created and it can be found under CANape folder. The following figure shows the CANape interface.
[image: ]
The software requires a database to work called A2L file. To help build the A2L file, an executable file is necessary. An executable file will be automatically generated after the application is successfully compiled in the SDK. The file is named <application project name>.elf and it can be found under the path “<application project name>\Debug\<application project name>.elf”.
[image: ]

Step 12: More about CANape
A CANape project is provided and most configurations have been done already. To use this CANape project for your projects, only a small modification is required which is related A2L file. So, the rest of the manual will mainly focus on the A2L modification and communication between CANape and our Zedboard.
If you can afford a CANape license, then it is much more convenient to modify the A2L file and you don’t need to waste time to write the database (A2L).
[image: ]
“config.cna” is the CANape project file. Double click it to open the CANape project.
[bookmark: _GoBack]A2L file is the most important component in the CANape project. To communicate with our board (ECU), An A2L file is necessary. This file stores lots of information including the protocol layer information, variable definitions for measurement or calibration, etc. The measurement and calibration variables in the CANape are independent with those in the program. But we can connect the variables together so that variables at two sides are able to synchronize. This connection is done by using the “LINK_MAP” parameter in the MEASUREMENT and CHARACTERISTIC definitions in the A2L file.


Step 13: Basic Setting for Your Own Project
After obtaining the sample CANape project, several steps are required to be done in order to use it in your own project.
For the first time to open this CANape project, the path of the .elf file should be specified in the project settings.
1. Double-click the highlighted component in the following figure.
[image: ]
2. In MAP File, edit the predetermined MAP file by giving the directory of your own one. Make sure choose the correct format of the MAP file (ELF/DWARF 32/64 Bit)! Check the box to update only if MAP file was changed.
[image: ]

Step 14: Measurement Configuration
Click “Measurement Configuration”, choose “Signals” to open the measurement configuration window. This window organizes the parameters and measurements added to the CANape project. Measurement signal (Measurement signal) can only be added in the measurement windows while Measurement signal (Parameter) can be added into either measurement windows or calibration windows. Check active box of a signal will enable its display in the measurement windows. Measurement mode specifies the time period of measurement for that signal.
[image: ]
After modifying the A2L file and updating the project, the signals won’t automatically update in this window. That is, it requires manual updates. Right-click the signals in the window and choose delete to remove this signal. To add a signal, click the second icon to insert a new signal into the measurement.
[image: ]
The added signals are highlighted in blue while the non-added signals are black. Choose the signal that you want to add and then click Apply or you can also double-click to add that signal.
[image: ]
For current version of software, it supports measurement for 100us (DAQ), 2ms (DAQ) and polling mode. To support different DAQ measurement, the source code needs a small modification and DAQ section in the A2L file also needs modification.


Step 15: Measurement/Characteristic Definition
In A2L file, the measurement is defined in the format shown in the following figure.
[image: ]
The definition of the characteristic is shown in the following figure.
[image: ]
To understand the structure of the variable definitions above and parameters in the definitions, it is helpful to read these two references.
· http://read.pudn.com/downloads200/ebook/942888/ASAP2.pdf
· https://cdn.intrepidcs.net/support/ASAP2Editor/icsASAP2Editor.pdf
If you have a valid CANape license, you can use its A2L editor – ASAP2 Studio to modify. In ASAP2 Studio, the MAP file is loaded with all the variables available and those variables can be directly added to the A2L file as a measurement or a parameter.


Step 16: Build CANape Interface
Right click the blank space, you can add measurement windows.
[image: ]
Right click the measurement window, you can choose to add measurement signals.
[image: ]
Right click the blank space, you can add calibration windows.
[image: ]
Next, in “Database Selection” window you will choose the parameters that you want to add into the calibration window and click “Apply”. And then, the calibration window will appear.
Here I choose all the available parameters.
[image: ]
You can still adjust parameters in the calibration window by right clicking.
[image: ]


Step 17: Use CANape to Measure and Calibrate
Now, all the necessary steps have been taken. And the communication at both PC side and embedded system side are ready to go.
To establish the connection, the microprocessor should run the program at first. And then, in CANape, click “Online” button to connect to the embedded system.
[image: ]
If the connection is successfully established, the “Online” button will go grey and the “Offline” button, which is used to disconnect, is on.
[image: ]
Now, you can use the calibration window to online modify variables’ values. 
To obtain the measurement results, you will use buttons in “Data Acquisition” area. Click “Start” button to start to show the measurement results in the measurement windows. “Stop” button is used to stop measurement.
[image: ]

End
This manual describes some necessary steps to establish a connection between CANape software and ZYNQ-7000 Zedboard (embedded system, microprocessor) for measurement and calibration purpose.
This manual doesn’t cover the details in communication coding, and only mentions some operations in CANape. Users can have their explorations on coding part and other CANape operations.
image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

