Analysis of Variability of Solar Panels in The Distribution System

Tatianne Da Silva
Advisor: Dr. Héctor Pulgar-Painemal
Mentor: Jonathan Devadason
Final Presentation
7/14/2016
Motivation

Substation

Distribution System

Residences

Solar Panels

Static VAR Compensator (SVC)
Background

• SVC (Static VAR Compensator)

• Current Power Flow

\[S = P + jQ = \bar{V} \times I \]
• Mathematical Modelling

- The transients of the inductances of the distribution lines were neglected as they were assumed to be too fast
- Solar panels were modeled as power injections
- Dynamic model for SVC was considered
Cases

- 4 bus system
• 20 bus system
Results

Analysis of bus voltage with and without SVC for the 4 bus system with 3 different solar irradiations

Ppv = 1 0 < t < 5
Ppv = 1.1 5 < t < 7
Ppv = 0.8 7 < t < 10

Ppv = 1 0 < t < 5
Ppv = 1.1 5 < t < 7
Ppv = 1 7 < t < 10

Ppv = 1 0 < t < 5
Ppv = 1.1 5 < t < 7
Ppv = 1.5 7 < t < 10
Results

Analysis of bus voltage with and without SVC for the 20 bus system with various solar irradiations

- P_{pv0} = 0.0001 \quad 0 < t < 5
- P_{pv1} = 0.0001 \quad 5 < t < 7
- P_{pv2} = 0.005 \quad 7 < t < 10
- P_{pv3} = 0.0001 \quad 10 < t < 12
- P_{pv4} = 0.0001 \quad 12 < t < 13
- P_{pv5} = 0.0001 \quad 13 < t < 16
- P_{pv6} = 0.0001 \quad 16 < t < 16.5
- P_{pv7} = 0.0001 \quad 16.5 < t < 20
Ppv0 = 0.0001 \hspace{1cm} 0 < t < 5
Ppv1 = 0.0001 \hspace{1cm} 5 < t < 7
Ppv2 \hspace{1cm} 7 < t < 10
 \hspace{1cm} PV 1 = 0.003
 \hspace{1cm} PV 2 = 0.005
 \hspace{1cm} PV 3 = 0.003
Ppv3 = 0.0001 \hspace{1cm} 10 < t < 12

Ppv4 = 0.0001 \hspace{1cm} 12 < t < 13
Ppv5 \hspace{1cm} 13 < t < 16
 \hspace{1cm} PV 1 = 0.009
 \hspace{1cm} PV 2 = 0.005
 \hspace{1cm} PV 3 = 0.009
Ppv6 = 0.0001 \hspace{1cm} 16 < t < 16.5
Ppv7 = 0.0001 \hspace{1cm} 16.5 < t < 20
Ppv0 = 0.01 0 < t < 5
Ppv1 = 0.0001 5 < t < 7
Ppv2 7 < t < 10
PV 1 = 0.003
PV 2 = 0.005
PV 3 = 0.003
Ppv3 = 0.0001 10 < t < 12
PV 1 = 0.002
PV 2 = 0.007
PV 3 = 0.002

Ppv4 = 0.0001 12 < t < 13
Ppv5 13 < t < 16
PV 1 = 0.009
PV 2 = 0.005
PV 3 = 0.009
Ppv6 = 0.0001 16 < t < 16.5
Ppv7 = 0.0001 16.5 < t < 20
Conclusion

With the implementation of SVCs it is possible to maintain the bus voltage within an acceptable band compared with the cases without SVCs when there are variations in the solar panel output.
This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.
Questions and Answers