Load Hiding to Preserve Privacy from Smart Meter Measurements

Ryan Fraser
Advisor: Dr. Kevin Tomsovic
Ailin Asadinejad

Final Project Presentation
July 14, 2016
Knoxville, Tennessee
Smart Meters

Provide More information
More accurate forecasting
Fault detection
Increased information to consumers
Increased stability for renewables and energy storage

United States Smart Meter Use, 2014
Non-Invasive Load Monitoring (NILM)

Capable of Identifying Specific Appliances

Loss of privacy

Map activities and behaviors of homeowners
Previous Research

Battery-based Load Monitoring

Home Power Use

Battery

Power Read by Meter
Project Goal

Design a system to improve individual household privacy

Maintain the benefits provided by smart meters
Entropy is the measure of unpredictability of information

\[H(X) = - \sum_{i=1}^{n} P(x_i) \log_2 P(x_i) \]

\[H_{max}: \quad P(x_i) = \frac{1}{n} \]
Load Imitating

Add false loads in order to increase system entropy

Model of Television Power Demand

Model of Lighting Power Demand
Data
Analyzed Loads

<table>
<thead>
<tr>
<th>Load</th>
<th>Power [W]</th>
<th>Duration [minute]</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>STD</td>
<td>Minimum</td>
</tr>
<tr>
<td>Additional</td>
<td>53.0</td>
<td>0.0</td>
<td>53.0</td>
</tr>
<tr>
<td>Computer</td>
<td>10.0</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>246.5</td>
<td>7.8</td>
<td>230.0</td>
</tr>
<tr>
<td>Cooking</td>
<td>1233.0</td>
<td>39.4</td>
<td>1150.0</td>
</tr>
<tr>
<td>TV</td>
<td>20.0</td>
<td>0.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>106.4</td>
<td>7.9</td>
<td>90.0</td>
</tr>
<tr>
<td>Washing</td>
<td>3260.7</td>
<td>428.5</td>
<td>2400.0</td>
</tr>
<tr>
<td></td>
<td>417.5</td>
<td>20.1</td>
<td>375.0</td>
</tr>
<tr>
<td>Lighting</td>
<td>13.9</td>
<td>7.4</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>29.0</td>
<td>0.0</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>61.3</td>
<td>31.5</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>0.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>187.3</td>
<td>118.5</td>
<td>120.0</td>
</tr>
<tr>
<td>Freezer</td>
<td>134.8</td>
<td>78.4</td>
<td>120.0</td>
</tr>
<tr>
<td>Dishwasher</td>
<td>930.7</td>
<td>739.3</td>
<td>120.0</td>
</tr>
<tr>
<td>HVAC</td>
<td>317.8</td>
<td>0.0</td>
<td>317.8</td>
</tr>
</tbody>
</table>
Formula

\[B(t) = \frac{1}{2n} \sum_{i=-n}^{n} A(t + i) - A(t) \]

when \(B(t) > 0 \) battery discharges
\(B(t) < 0 \) battery charges

Probability of Load Occurring = \(A(t) + B(t) \)
Results

Total Power Demand Comparison

- Power Demand (W)
- Time (hrs)

Imitation
Original
Results

![Graph showing entropy difference for various load types](image)

- **Load Type**: CFL, Computer, Cooking, Dishwasher, Dryer, Freezer, Halogen, HVAC, Incandescent, Linear Fluorescent, Refrigerator, TV, Washer
- **Comparisons**:
 - Original Entropy
 - Imitating Entropy
- **Entropy Values**:
 - Values range from 0 to 500

Source: CURRENT
Possible Further Work

Design to work with non-time based loads

Optimize with a battery

Test with more realistic data

Test against NILM
Acknowledgements

This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.
Questions and Answers