Heart–Rate Monitoring with Photoplethysmography (PPG) Sensors

Katherine Courtney¹ and Aruha Khan²
¹Clinton High School ²L&N STEM Academy
Mentor—Ava Hedayatipour, University of Tennessee, Knoxville

Introduction
• Photoplethysmography (PPG) is a simple technique used to detect volumetric changes in blood in peripheral circulation by optical means, particularly low–intensity infrared (IR) light.
• The movement of IR light through biological tissues enables its absorption which is considerably more towards blood in comparison to its surrounding tissues.
• Alterations in blood flow are easily perceived by PPG sensors as changes in the intensity of light.
• The following steps were followed to construct a functioning PPG system to create a waveform graph of one’s heartbeat, thereby accomplishing the objective:

 Design printed circuit board on EAGLE software
 Fabricate printed circuit board
 Monitor heartbeat with DAQ & LabVIEW

 Depiction of printed circuit board schematic on EAGLE (below)

Printed Circuit Board (PCB)
• EAGLE is an application that specializes in electronic design automation, which features a schematic editor and fundamental PCB layout tools.
• We predominantly relied upon EAGLE to (1) construct a schematic and (2) convert the aforementioned schematic into the PCB format.
• In order to create a schematic and, subsequently, an operating board, one must accomplish the following:

 Browse library of components and place appropriately upon map
 Wire each constituent and convert document to PCB format
 Complete necessary alterations and auto-route components
 Generate Gerber files and submit to manufacturer
 Solder each element on the PCB and test it to ensure effectiveness

Objective
• Photoplethysmographic technology is noninvasive and relatively inexpensive, aspects of the methodology that sanctions its usage in heart rate monitoring, among several other things.
• Overall, our objective is to create a simplistic device that accurately and effectively monitors one’s heart rate with PPG.

LabVIEW and Final Testing
• LabVIEW, a systems engineering software for applications that require test, measurement, and control, was primarily relied upon to create a program that would ultimately generate a waveform graph of one’s heart rate.
• In order to accomplish the aforementioned objective, one must program a data acquisition (DAQ) application with NI–DAQmx functions.
• Ultimately, the printed circuit board is connected to the following to enable the creation of a sinusoidal graph depicting heart rate:

 Data acquisition component, USB–6009
 Heartbeat sensor, which allows LabVIEW to receive signal exuded from DAQ

 Depiction of resting heart rate in LabVIEW software (above)

SPONSORS: This work was supported primarily by the Engineering Research Center Program of the National Science Foundation and the Department of Energy under NSF Award Number EEC–1041877 and the CURENT Industry Partnership Program.