Fault Simulation for Hardware Emulation

John Curtin
Faculty Advisor: Dr. Fred Wang
Graduate Mentor: Geoff Laughon
CURENT Final Presentation
7/14/16
Min Kao Building, University of Tennessee at Knoxville
Faults

- Many different kinds
 - Example: Line-to-Line

- Large amounts of power dissipation
- Caused by fault current
Faults (Continued)

• Other kinds:
 - Line-to-Ground, Double-Line-to-Ground, Three-phase, open-circuit

• Cause massive disturbances in power systems
 - Can damage/destroy equipment
 - Causes power outages

• Fault current important parameter in protection systems
Hardware Test Bed (HTB)

- Hardware simulation of power grid
- Made up of several hardware racks
- More realistic than software
Hardware Test Bed (HTB) (Continued)

- Uses AC-to-DC power converters
 - Coupled for loads and generators

- Uses short line approximation
- Can simulate open-circuit faults
Hardware Construction/Design

• Worked extensively building cabinets

• Involved metalwork, soldering, crimping, wiring, and so on

• Important skills for engineers
Problem Statement

- To help the HTB accurately simulate faults
 - Includes pre-fault, transient, and post-fault current waveforms

- Create Simulink Simulation

- Use to make C code to control power converters

- Known values
 - Sending voltage
 - Receiving voltage
 - Line impedance
 - Fault impedance
 - Fault location
 - Start and End time

- Calculate Line and Fault Currents
Background Research

• Traditional fault analysis
 - Uses phasor-domain analysis
 - Not adequate for research project
 - Does not incorporate transient

• Researched several topics, including:
 - Z-bus method
 - Generator Stability
 - d-q coordinates
• Decided method
 - s-domain transfer function
 - $s = \sigma + j\omega$
 - Continuous, all-inclusive variable
 - Constraints of s-domain do not conflict with project constraints

• Use circuit analysis with $Z = R + sL$
Implementation

• Model circuits
 • Example: L-to-G

• Before Fault
 \[i_A = \frac{V_A - V_a}{Z_A + Z_a} \]

• After Fault
 • \(i_F = i_A - i_a \)

\[
\begin{align*}
\{ i_A &\rightarrow \frac{-V_a Z_f + V_A (Z_a + Z_f)}{Z_A Z_f + Z_a (Z_A + Z_f)} , i_a &\rightarrow \frac{V_A Z_f - V_a (Z_A + Z_f)}{Z_A Z_f + Z_a (Z_A + Z_f)} \}
\end{align*}
\]
Simulation

• Put mathematical models into Simulink
 ♦ Note: not using circuit simulation tools
 ♦ Make model as close to C code as possible

• Static Transfer Function
 ♦ Does not give transient effect
Simulation (Continued)

- Dynamic Transfer Function
 - Variable coefficients
 - Switch with step functions
 - Attempted several methods
 - Ran out of time
Conclusion

- Wrong research topics
 - Consumed time

- Learned interesting topics

- Create Dynamic transfer function in future
This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.
I would like to thank the following people:
- Dr. Fred Wang
- Dr. Kevin Tomsavic
- Dr. Gerald Selvaggi
- Geoff Laughon
- Bo Liu
- Yiwei Ma
- Jessica Boles
- Shuoting Zhang
Questions and Answers