Loss Model for Gallium Nitride DC-DC Buck Converter

Rushi Patel
Electrical and Computer Engineering Department
Mississippi State University
Starkville, MS, USA 39762
Email: rushijackson@gmail.com

Dr. Daniel Costinett
Electrical Engineering and Computer Science Department
University of Tennessee
Knoxville, TN, USA 37996
Email: daniel.costinett@utk.edu

Abstract—In recent years, more research has been done on Enhancement Mode Gallium Nitride (eGaN) converters as the world is moving towards more power efficient converters. The process to make converters more efficient was complicated and slow in 20th century. With help of simulation tools such as MATLAB and LTspice, this process has become much faster and reliable in modern era. In order to make this process even faster, one of the important aspects in power electronics is to evaluate different losses in the converter. A model for estimating power losses for eGaN DC-DC buck converter (12V/1.2V) is illustrated in this paper. This loss model was calculated for different frequencies and compared experimentally, theoretically and in simulation. This paper also investigated the constant variables which help realize the difference between theoretical and experimental losses of eGaN respect to output current.

I. INTRODUCTION

As eGaN power transistors appear to be most promising candidates to replace silicon power MOSFETs, eGaN power converters could also be promising candidates to replace silicon based power converters [1]. There has been tremendous amount of research done on losses specific to eGaN power transistors such as switching losses, but very few research has been done on the losses of the eGaN converter as whole. One of the organization that is leading this campaign is Efficient Power Conversion (EPC) which was founded in 2007. According to EPC, power based converters not only improving the efficiency of electrical power but also enabling new, life-changing applications that didn’t exist five years ago [2]. This research also used EPC 9036 eGaN half bridge DC-DC synchronous buck converter development board as shown in figure 1 to study the loss model. Buck converter was chose because of its simplicity and wide use in power electronics world for testing purpose. The loss model referred to total loss in the buck converter.

The proposed loss model included eGaN power transistor losses, inductor loss, and capacitor loss. The eGaN power transistor losses included conduction loss on high side and low side, switching loss on high side, and gate driver loss. Switching loss on low side was very small thus neglected. Other losses such as dead time loss and output capacitance loss were also included. A synchronous buck converter consisted two power transistors which helped improve efficiency by neglecting diode loss. Choosing a right inductor and a capacitor to improve loss model was one of the important task as development board did not have them.

The power electronics industry projected that by 2025, 80% of the time will be spend working on the modeling and simulating and only 20% on hardware prototyping [3]. This method will decrease the amount of iterative hardware prototyping before successfully achieving goals. One of the aspects of this research was to evaluate the constant variables in the different losses which help realize the difference between experimental and theoretical loss models. The next hardware prototyping of this converter will be much more efficient and reduce the iterative process when keeping in mind these constant variables.

II. METHODOLOGY

Three different methods were used to validate the results and to make appropriate conclusion: A. Experimental Analysis B. Theoretical Analysis C. LTspice Simulation.
A. Experimental Analysis

For this experiment, the first challenge faced was to choose the right inductor and capacitor. The best method was to use a simulation tool LTspice which shows the stability of the buck converter when different combination of inductor and capacitor values are chose. The stability of the system was not best when the combination of 280nH and 10uF were used in the LTspice simulation. However, during the experiment, initial input voltage was set to 0V and slowly increased to its final value of 12V. This method also stabilized the system as it was same as having the feedback control loop. Further discussion on this is in the LTspice simulation section.

Fig. 2: eGaN DC-DC buck converter block diagram

A block diagram for development board is shown in figure 2 to understand the eGaN buck converter development board. The input voltage (Vin) was 12V DC power supply connected straight to HS eGaN transistor. The gate drive voltage (VDD) provided between 7-12V DC power to turn on the eGaN transistor which produced flow of current in the drain. The pulse width modulation (PWM) input provided the duty ratio of 10%, amplitude 3V peak to peak, and 1MHz or 500kHz frequency to step down the voltage to 1.2V. It also assisted in switching HS and LS eGaN transistors.

Fig. 3: Switch node measurement at 1MHz on oscilloscope

For this particular experiment, the data gathered at 500kHz and 1MHz to in order to analyze the data accurately and provide unbiased conclusion. On the development board, the switch node terminal and ground terminal were specifically designed to observe switch node in the oscilloscope. Figure 3 and 4 provide confirmation of the duty ratio of PWM at 1MHz and 500kHz respectively.

Fig. 4: Switch node measurement at 500kHz on oscilloscope

To get various range of output current, an electric load was used. The electric load set the constant output current as desired and made any changes as needed in any other components. To ensure the quality measurement and avoid any resistance in the wire, four wire resistance or kelvin resistance measurement method was used. The input current and input voltage was directly measured from the development board. The electric load also had voltage sensing capability which accurately provided output voltage at the load. The duty ratio of PWM had to be increased slightly at higher output currents at the load. The efficiency was calculated from experimental input power and output power.

B. Theoretical Analysis

In order to evaluate different losses in the EPC 9036 development board, previous loss model datasheet from fair-child was used as a reference [4]. The datasheet provided a basic idea of different losses in the synchronous buck converter. Because the loss model needed to be very explicit as possible, trusting one datasheet was not enough to prove that the loss model was accurate. Loss model datasheet from Texas Instrument provided exceptionally well precise equations to study in depth the different losses in the buck converter [5].

Power losses in the synchronous buck converter included several parts: eGaN transistors loss, inductor loss, capacitor loss etc. Among these, eGaN transistor loss was complicated and contributed significant part of the loss model. The first loss associated with eGaN transistor was conduction loss. Conduction loss was determined by the on resistance on the eGaN transistor and the RMS current. Specifically, the conduction losses were divided into high side (HS) eGaN transistor loss and low side (LS) eGaN transistor loss as...
shown in equation (1) and (2). The RMS current used in equation (1) and (2) was calculated by equation (3) and (4) for HS and LS eGaN transistor respectively. The gate current is given by equation (5).

\[P_{\text{cond(HS)}} = \frac{D}{3} \left(I_{\text{out}} + \frac{I_{\text{ripple}}}{2} \right)^2 (I_{\text{out}} - \frac{I_{\text{ripple}}}{2}) \]

\[P_{\text{cond(LS)}} = \frac{1 - D}{3} \left(I_{\text{out}} + \frac{I_{\text{ripple}}}{2} \right)^2 (I_{\text{out}} - \frac{I_{\text{ripple}}}{2}) \]

\[I_{\text{RMS(HS)}} = \sqrt{\frac{D}{3} \left(I_{\text{out}} + \frac{I_{\text{ripple}}}{2} \right)^2 (I_{\text{out}} - \frac{I_{\text{ripple}}}{2})} \]

\[I_{\text{RMS(LS)}} = \sqrt{\frac{1 - D}{3} \left(I_{\text{out}} + \frac{I_{\text{ripple}}}{2} \right)^2 (I_{\text{out}} - \frac{I_{\text{ripple}}}{2})} \]

\[I_{\text{ripple}} = \frac{(V_{\text{in}} - V_{\text{out}}) \cdot D \cdot T_{\text{sw}}}{L} \]

The second loss associated with eGaN transistor was switching loss. Switching loss was composed of HS and LS switching loss in eGaN transistor, gate drive loss, deadtime loss and output capacitance loss. Switching loss on HS was induced during turn on and turn off transition due to the LS clamping effects, which causes HS affected by both high current and high voltage at the same time. HS switching loss and HS gate current is given by equation (6) and equation (7) respectively. Considering LS eGaN transistor, both LS turnon and turnoff were soft switching at normal operations. Therefore, the LS switching loss was small and thus neglected in this report.

\[P_{\text{sw(HS)}} = \frac{V_{\text{in}} \cdot I_{\text{out}} \cdot f_{\text{sw}} \cdot Q_{\text{sw}}}{I_{g}} \]

\[I_{g} = \frac{V_{\text{Driver}} - V_{PL}}{R_{g} + R_{\text{Driver}}} \]

Deadtime loss was induced by LS eGaN transistor during dead-times and can be calculated by equation (8). The gate drive loss is given by equation (9). The deadtime during rise and fall is given by equations (10) and (11).

\[P_{\text{deadtime}} = V_{SD} \left(I_{\text{out}} - \frac{I_{\text{ripple}}}{2} \right) t_{\text{deadtime(rise)}} + \left(I_{\text{out}} + \frac{I_{\text{ripple}}}{2} \right) t_{\text{deadtime(fall)}} \]

\[P_{\text{gate}} = P_{\text{gate(HS)}} + P_{\text{gate(LS)}} \]

\[P_{\text{gate}} = (Q_{g(HS)} + Q_{g(LS)}) \cdot V_{\text{Driver}} \cdot f_{\text{sw}} \]

\[t_{\text{deadtime(rise)}} \approx t_{\text{delay(rise)}} \]

\[t_{\text{deadtime(fall)}} = t_{\text{delay(fall)}} + \frac{Q_{g(LS)} \cdot (R_{\text{gate}} + R_{\text{driver}})}{V_{\text{Driver}} - \frac{V_{\text{in}}}{2}} \]

Another eGaN transistor related power loss in synchronous buck converters was eGaN output capacitance loss, which was induced by output capacitance charge/discharge. The output capacitance loss for HS and LS is given by equation (12) and (13) respectively.

\[P_{\text{Coss(HS)}} = 0.5 \cdot Q_{\text{cos(HS)}} \cdot V_{\text{in}}^2 \cdot f_{\text{sw}} \]

\[P_{\text{Coss(LS)}} = 0.5 \cdot Q_{\text{cos(LS)}} \cdot V_{\text{in}}^2 \cdot f_{\text{sw}} \]

DC Resistance (DCR) and Equivalent Series Resistance (ESR) in inductor and capacitor were directly proportional to the inductor and capacitor loss. The 280nH inductor and 10uF capacitor used in the development board had very low DCR and ESR values, which minimized the inductor loss and capacitor loss. Inductor loss and capacitor loss are provided by equation (14) and equation (15) respectively. The RMS current on the inductor was calculated by equation (16).

\[P_{\text{DCL}} = I_{\text{RMS(L)}}^2 \cdot \text{DCR} \]

\[P_{\text{DCC}} = I_{\text{ripple}}^2 \cdot \text{ESR} \]

\[I_{\text{RMS(L)}} = \sqrt{I_{\text{out}}^2 + \frac{I_{\text{ripple}}^2}{12}} \]

The datasheet of the eGaN transistor EPC 2100 provided all of the values for the parameters as most of those losses are associated with transistor loss [6]. Datasheets for inductor and capacitor are obtained from Coilcraft and Digikey respectively [7,8]. Table I provides all the values for the parameters in equation (1) to (16).

<table>
<thead>
<tr>
<th>TABLE I. PARAMETER AND ITS VALUE</th>
</tr>
</thead>
</table>
Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{in}</td>
<td>12V</td>
</tr>
<tr>
<td>V_{out}</td>
<td>1.2V</td>
</tr>
<tr>
<td>L</td>
<td>280nH</td>
</tr>
<tr>
<td>C</td>
<td>10uF</td>
</tr>
<tr>
<td>f_{sw}</td>
<td>1MHz/500kHz</td>
</tr>
<tr>
<td>t_{sw}</td>
<td>1µs/2µs</td>
</tr>
<tr>
<td>I_{out}</td>
<td>0A to 32A</td>
</tr>
<tr>
<td>$R_{ds(ON)}$</td>
<td>6mΩ</td>
</tr>
<tr>
<td>$R_{ds(ON)}$</td>
<td>1.5mΩ</td>
</tr>
<tr>
<td>V_{driver}</td>
<td>10V</td>
</tr>
<tr>
<td>R_{gate}</td>
<td>0.3Ω</td>
</tr>
<tr>
<td>R_{driver}</td>
<td>2.7Ω</td>
</tr>
<tr>
<td>$Q_{sw(HS)}$</td>
<td>1.1nC</td>
</tr>
<tr>
<td>$Q_{g(HS)}$</td>
<td>3.5nC</td>
</tr>
<tr>
<td>$Q_{g(LS)}$</td>
<td>15nC</td>
</tr>
<tr>
<td>$t_{delay(rise)}$</td>
<td>650ns</td>
</tr>
<tr>
<td>$t_{delay(fall)}$</td>
<td>750ns</td>
</tr>
<tr>
<td>$C_{oss(HS)}$</td>
<td>290pF</td>
</tr>
<tr>
<td>$C_{oss(LS)}$</td>
<td>1600pF</td>
</tr>
<tr>
<td>DCR</td>
<td>29mΩ</td>
</tr>
<tr>
<td>ESR</td>
<td>2mΩ</td>
</tr>
</tbody>
</table>

All individual losses were added together to calculate total loss in the eGaN buck converter. The output power was easily obtained as the output current and output voltage were known parameters. The total loss was added to output power to get input power. Finally, efficiency obtained when output power was divided by input power.

Because of the wide range of the output current from 0 to 32 amps, it was more complicated and more time consuming if it was done by hand. In order to reduce the complexity, a programming tool name MATLAB was used which made the calculation easy and less time consuming. MATLAB has a unique feature that allowed a variable to define in a range. With the help of this feature, output current was defined from 0 to 32 amps with increment of 0.032 to ensure precise curve of efficiency. The efficiency vs output current graph was plotted at 500kHz and 1MHz in order to make the accurate conclusion.

C. LTspice Simulation

One of the advantages of using LTspice Simulation was that it provided more option to check your results and to ensure that progress was made in the right direction. As mentioned earlier, LTspice simulation initially used to figure out the right inductor and capacitor for the development board. The stability of the system was sufficient to confirm that 280nH inductor and 10uF capacitor would work experimentally.

The LTspice model of the development board is shown in the figure 5. To justify results from LTspice, losses such as inductor loss, capacitor loss, gate drive loss etc. are also modeled as shown in figure 5. The LTspice model for the inductor and its parameters are provided on Coilcraft’s website. The gate drive loss modeled with a resistor in series with the gate and the PWM source. The LTspice model used for EPC2100 eGaN transistor provided on EPC’s website. Therefore, all the transistor related losses are embedded inside the EPC2100 eGaN transistor model. The capacitor loss is also embedded inside the capacitor model in the LTspice.

Spice directives that measured the input current and voltage, and the output current and voltage in the LTspice were used to receive precise measurements. Changing the load resistance provided various range of output current as well as adding initial condition produce faster simulation. The initial condition was changed depending upon the output current. The LTspice simulation was also done at 500kHz and 1MHz frequency.

III. RESULTS AND DISCUSSION

The theoretical efficiency was collected for two different frequencies with the help of MATLAB. Because the output current included thousand points (increment of 0.032 from 0 to 32), it was impossible to contain all the results in this paper. Therefore, those points were plotted in a graph to make comparison with experimental efficiency and efficiency from LTspice simulation at 1MHz as shown in figure 6.

![Efficiency vs Output Current](image)

Fig. 6: Output current vs efficiency plot at 1MHz
Looking at similarities of the theoretical and experimental efficiency, both have similar kind of trend. However, comparing both there were huge differences. At lower current, the experimental efficiency had higher efficiency than theoretical efficiency. Once output current reached 6 A, the theoretical efficiency was higher than experimental efficiency. The purpose of plotting LTspice efficiency was accomplished as it clearly matches with experimental efficiency. The similar kind of characteristics can also seen at 500kHz in figure 7.

From these plots, two loss models showing the loss difference between theoretical and experimental were plotted at 1MHz and 500kHz as shown in figure 8 and 9 respectively. Both of these plots show similar trends. In fact, the loss difference approaches 0 watts approximately at 10 A in both cases. However, this does not prove that frequency is independent to obtain an accurate loss model.

In order to point out the exact variables that contributed in the loss difference, curve fitting tool from MATLAB was used to check the error. Figures 10 and 11 show that second order polynomial method fits the best through all the points. This indicated that any second order equation may cause the loss difference.
Equations (1),(2),(14), and (15) are the ones with second order equation. From these equations, following variables were tested experimentally to verify the loss model: \(R_{\text{ds(on HS)}} \), \(R_{\text{ds(on LS)}} \), ESR, and DCR. The \(R_{\text{ds(on HS)}} \) was measured between 5\(\Omega \) and 7\(\Omega \), while \(R_{\text{ds(on LS)}} \) was measured between 1\(\Omega \) and 2.2\(\Omega \). The theoretical values for HS and LS are 6\(\Omega \) and 1.5\(\Omega \). Therefore, \(R_{\text{ds(on HS)}} \) and \(R_{\text{ds(on LS)}} \) do not contribute to the loss difference. When DCR of the inductor was measured, the experimental value was between 1\(\Omega \) and 3\(\Omega \). This range of values were much higher than theoretical value of .29\(\Omega \). This clearly indicated that DCR did make contribution in loss difference. To confirm further, the theoretical value was changed from .29\(\Omega \) to 2\(\Omega \). The new plot shown in figure 12 and 13 clearly suggested that ESR was one of the variable as the theoretical and experimental efficiency matched closely after 6\(A \) of output current. The method attempted to measure the ESR on the capacitor experimentally was not precise enough to conclude that ESR was also part of the loss difference.

Fig. 12: After changing theoretical value from .29\(\Omega \) to 2\(\Omega \) at 1MHz

Fig. 13: After changing theoretical value from .29\(\Omega \) to 2\(\Omega \) at 500kHz

IV. CONCLUSION AND FUTURE WORK

The power converters will keep evolving to improve efficiency as the technology that uses will evolve. Having a known loss model for a converter is very useful to improve efficiency in less time and less iterative process for hardware prototyping. This research showed that the loss difference between experimental and theoretical data was caused by ESR of an inductor. Although ESR is one of such variables that are at the fault. In the future, more complex experiments can be done to test different variables. More precise measurements will also help to make the loss model as accurate as possible. Some known facts such as the initial difference between experimental and theoretical efficiency can also be resolved in the future. New designs with different capacitor and inductor to produce new loss model and comparing with current loss model can also be useful to know the behavior of it.

ACKNOWLEDGMENT

This work was supported primarily by the Engineering Research Center Program of the National Science Foundation and the Department of Energy under NSF Award Number EEC- 1041877 and the CURENT Industry Partnership Program. I would also like to thank my faculty advisor Dr. Daniel Costinett for his ideas and support.

REFERENCES

